3D基因组成像首次在人类活细胞中实现

医疗健康 来源:生物探索 0评论

7月28日,最新一期的《科学》杂志发表了题为“ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells”的封面文章。在这一研究中,来自Salk生物研究所和加州大学圣地亚哥分校的科学家们揭开了关于DNA组织的长期生物学之谜。研究人员首次在人类活细胞的细胞核中实现了3D基因组成像。

图片来源Science

新染料与关键技术ChromEMT

如果伸展开来,我们体内所有细胞的DNA将能到达冥王星。那么,每一个微小的细胞是如何将一个两米长的DNA放入它的细胞核中的呢?

这一生物学谜题的答案是理解细胞核中的DNA三维结构如何影响人体生物学的关键,包括我们的基因组如何协调细胞的活动,以及基因是如何在父母和子女之间传递的。

在这项最新的研究中,科学家们首次提出了人类活细胞细胞核中染色质3D结构前所未有的视图。

在这一杰出的成果中,研究人员鉴定出了一种新型的DNA染料。这种染料与先进的显微镜检查技术融合成了一种称为ChromEMT的新技术,能够让休眠期和有丝分裂阶段的细胞的染色质结构被高度详细的可视化。

该研究的通讯作者Clodagh O'Shea说:“生物学中最棘手的挑战之一就是弄清细胞核中DNA的高阶(higher-order)结构,以及理解这些结构与功能之间的联系。这是非常重要的,因为DNA的生物学相关结构决定了基因的功能和活性。”

通过揭示活细胞中细胞核染色质的结构,这项研究可能有助于改写DNA结构的教科书模型。

活细胞中染色质结构之谜

自Francis Crick和James Watson确定DNA的初级结构是双螺旋以来,科学家们一直想知道,DNA是如何进一步组织,使其完整的长度能够装进细胞核中。X射线和显微镜检查揭示了染色质组织的初级结构:包含147个碱基的DNA缠绕着蛋白质,形成直径约为11纳米的微粒——被称为核小体。染色质(染色质是间期细胞遗传物质存在的形式。染色体是指细胞在有丝分裂或减数分裂的特定阶段,由染色质聚缩而成的棒状结构)被认为是由一连串的核小体所组成。

一个问题是,此前,没有人在还未破碎的细胞(指完整细胞)中在这些中间尺寸下(in these intermediate sizes)观察到过染色质的结构。也就是说,事实上,在完整细胞中染色质高阶结构的教科书模型仍未被证实。

为了解决在完整细胞核中可视化染色质的问题,O'Shea的研究小组筛选了大量的候选染料,最终找到了一个能够被精确操作的,通过一系列复杂化学反应使DNA的局部结构和3D聚合物结构能够在活细胞中被成像出来的染料。

随后,O'Shea的团队与加州大学圣地亚哥分校的显微镜学专家Mark Ellisman教授合作:通过将染色质染料与电子显微镜断层摄影技术结合,他们创造了名为ChromEMT(chromatin dye with electron-microscope tomography,ChromEMT)的新技术。

研究小组利用ChromEMT技术对休眠人类细胞和分裂期细胞中的染色质进行了成像和分析。令人惊讶的是,他们在任何地方都没有观察到任何教科书模型的高阶结构(Surprisingly, they did not see any of the higher-order structures of the textbook model anywhere.)。

该研究的第一作者Horng D. Ou说:“从细胞核中提取,并在体外处理过的染色体可能不像完整细胞中的染色体。因此,能够在体内直接观察是非常重要的。”

From left: Horng Ou and Clodagh O'Shea(图片来源:Salk Institute)

颠覆人们此前想象

20世纪70年代以前,人们关于染色质结构的传统看法认为,染色质是组蛋白包裹在DNA外面形成的纤维状结构。直到1974年Kornberg等人根据染色质的酶切和电镜观察发现,核小体是染色质组装的基本结构单位,提出染色质结构的“串珠”模型,从而更新了人们关于染色质结构的传统观念。

此前,这些核小体串珠(nucleosome “beads on a string”)被认为是折叠成直径增加的(30、120或320纳米等)离散的纤维结构(discrete fibers of increasing diameter)。(百度百科上关于染色质结构的描述是这样的:串珠结构是染色质组装的一级结构。不过在细胞中,染色质很少以这种伸展的串珠状形式存在。当细胞核经温和处理后,在电镜下往往会看到直径为30纳米的染色质纤维。在有组蛋白H1存在的情况下,由核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径25~30纳米,螺距12纳米的螺线管。螺线管是染色质组装的二级结构。)

然而,O'Shea的研究小组观察到,在休眠和分裂的细胞中,染色质的“串珠”并没有形成任何理论上所推测的30、120或320纳米的高阶结构。取而代之的是,它形成了半柔性链(semi-flexible chain)。这种链的长度在5-24纳米之间连续变化,并通过弯曲和收缩实现不同的压实程度。这表明,是染色质的组装密度(packing density),而不是某些高阶结构决定了基因组哪些区域是激活的,哪些区域是被抑制的。

医谷,分享创业的艰辛与喜悦,如果您是创业者,期望被更多的人关注和了解,请猛点这里  寻求报道

意见反馈

相关阅读

热门推荐